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Modeling Fragility in Rapidly Evolving
Disaster Response Systems

Abstract

Assessing the changing dynamic between the demand that is placed upon a
community by cumulative exposure to hazards and the capacity of the commu-
nity to mitigate or respond to that risk represents a central problem in estimat-
ing the community’s resilience to disaster. This paper presents an initial effort to
simulate the dynamic between increasing demand and decreasing capacity in an
actual disaster response system to determine the point at which the system fails,
or the fragility of the system. Public organizations with legal responsibilities
for the protection of human life and property, as well as private organizations
responsible for managing utilities, communications, and transportation systems
in metropolitan regions, are unable to monitor the interdependent effects of
these critical infrastructure systems in real time. Further, they are not able to
share information effectively about an emerging threat, nor can they commu-
nicate easily among different response organizations at different jurisdictions in
a regional event. Modeling the fragility of sociotechnical response systems is
critical to enabling metropolitan regions to manage their exposure to risk more
efficiently and effectively. To construct a theoretical model of this process, we
observe the changing relationship between the demand for assistance and the
capacity of the community to provide assistance. We include in our model mea-
sures of the magnitude of the disaster, the number of jurisdictions, and a simple
type of cooperation to observe how these factors influence the efficiency of dis-
aster operations. Information spreads quickly through inter-organizational or
human networks. Stress in organizational performance arises when the amount
of information surpasses human capacity to absorb and comprehend it, leading
to failure in action. In complex disaster environments, failure in one component
of an interdependent system triggers failure in other components, decreasing
performance throughout the system and threatening potential collapse. Based
on the assessment of disaster operations as a dynamic process among interde-
pendent organizations, we sought to build a computational model of the rela-
tionship between demand and capacity in an evolving disaster response system.
We developed a simulation platform using Cellular Automata (Epstein et al.,
1996; Wolfram, 1994) to describe the pattern of interaction between demand
and capacity. To formalize the interaction between organizations and informa-
tion flow, we used evolving network theory which has been studied in the field
of mathematics (Erdos et al., 1960), computer science, and physics (Barabasi et
al., 1999; Newman, 2003). We show that different phases of disaster response
require different types of information and management skills. The efficiency of
disaster response is affected by the initial magnitude of the disaster, the type



and amount of resources available, the number of jurisdictions engaged, and the
type of response strategies used. The results from the simulation confirm that
efficiency has a negative correlation to initial disaster magnitude and a positive
correlation to initial capacity. The number of jurisdictions involved in response
operations is an independent variable influencing efficiency in disaster response,
but the strength and direction of this influence requires further study. Also,
sharing resources without specific information to improve coordination appears
not to enhance efficiency in disaster response. Finally, we focus not on the
amount of information that is available to practicing managers, but on strate-
gies for access to core information that enhance the efficiency of information
flow throughout the network of responding organizations. Network theory is
used to identify the core information.
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Abstract

Assessing the changing dynamic between the demaatdigiplaced upon a community by cumulative
exposure to hazards and the capacity of the community to mitigate or respond to that risk represents a
central problem in estimating the community’s resilience to disa$tes. paper presents an initial effort

to simulate the dynamic between increasing demand and decreasing capacity in andesastr
response systeto determine the point at which the system fails, or the fragility of the system.

Public organizations with legal responsibilities for the petitsn of human life and property, as well as
private organizations responsible for managing utilities, communications, and transportation systems in
metropolitan regions, are unable to monitor the interdependent effects of these critical infrastructure
sydems in real time. Further, they are not able to share information effectively about an emerging threat,
nor can they communicate easily among different response organizations at different jurisdictions in a
regional event. Modeling the fragility of soc@hnical response systems is critical to enabling
metropolitan regions to manage their exposure to risk more efficiently and effectively.

To constructa theoreticalmodel of this processwe observe thehanging relationship between the
demand for assiance and the capacity of the community to provide assistadeancludein our model
measures ahemagnitude of the disaster, thember of jurisdictios, anda simple type of cooperation to
observe how these factors influence the efficiency of disagperations. Information spresdjuickly
through interorganizatioal or humannetworks Stress in organizational performanagses when the
amount of information surpasshuman capacityo absorb and comprehend it, leading to failure in action.

In comgex disaster environments, failure in one component of an interdependent system triggers failure
in other components, decreasing performance throughout the system and threatening potential collapse.

Based ortheassessment of disaster operations as ardigygprocess among interdependent organizations,
we sought tobuild a computational model of the relationship betwedemandand capacity in an
evolvingdisasteresponse systeriiVe developea simulation platform using Cellular AutomafBpstein

et al, 1996; Wolfram, 19940 describe the pattern ofhteracton betweendemand andtapacity. D
formalizethe interaction between organizations and information flow, wedwselving network theory
which has been studied in the field of mathemafieedoset al, 1960) computer science, and physics
(Barabaset al,, 1999; Newman, 2003)

We show that different phases$ disaster responsequiredifferent types ofnformation and management
skills. The efficiency of disaster response is affected by the imtiagnitude of thalisasterthe type and
amount ofresourcs available the number of jurisdictios engagedandthe type ofresponsestrategies
used Theresultsfrom the simulatiorconfirm that efficiencyhasa negative correlation to initial disaster
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magnitude and @ositive correlation tanitial capacity The number of jurisdictiominvolved in response
operationsis an independentariable influencing efficiencyn disaster responséut the strengttand
directionof this influencerequires further study. Alssharing resourcawithout specific information to
improvecoordinationappearsiot to enhane efficiencyin disaster respae. Finally,we focusnot onthe
amount of informationthat is available to practicing managers, but on strategies for atcessre
information that enhance the efficiency of information flow throughout the network of responding
organizationsNetwork treory is used to identify the core information.

Contact:
Louise K. Comfort, Graduate School of Public & International Affairs; University of Pittsburgh;
Pittsburgh, PA 15260. Tel: 41@48-7606; Email: Ikc@pitt.edu

Keywords: Disaster managemeNgtworks, Fragility, Core information, Multorganizational response
Policy Problem

The shock of severe disaster in a major city creates a cascade of disruption among interdependent
operating systems that shatters the existing functional capacity of the wadeypulitan regio{fComfort,

1999; Quarantelli, 1998)Failure in one operational system triggers failure in other interdependent
sydems of electrical power, communications, transportation, water, gas, and sewage distribution. Under
severe threat, the operational capacity of a complex region staggers under spreading dysfunction,
compounding failure and creating new dangers for pdmriaFor example, communications failure
across conventional phone lines, cell phone systems, and overloaded radio channels following the 2001
World Trade Center (WTC) attacks in New York critically damaged the capacity of emergency response
organizationgn action and illustrated the vulnerability of interconnected metropolitan regions exposed to
high risk (Seifert, 2002) Lack of resource lack of coordinationandpoor communicatin are recurring
problems for organizational performance isabsteroperationsHowever these conditions are endemic to
severely damagedisasterenvironmentsimproving organizational performance in disaster environments
means finding methods that overne the potential risk posed by the initial conditions.

The amount of availableesource alonedoesnot explainorganizational performance disaster response
operationsFor example, availability of resources was not a limiting factor following \erld Trade
Centerdisasterof September 11, 200T'he Federal Emergency Management AgeEMA) granted
$9.0 billionto disaster operatiorfsom Presideris Disaster Rlief fund (FEMA 2003) the largesamount
granted in disaster relieséince FEMA was founded in 1979 Similarly, U.S. charities and public
organizationgeceiveda flood of donationsinlike anythey hal experienced befor&Vhile it is difficult to

tally precisely the total amount of funds received, 34 of the larger charities identified b@dheral
AccountingOffice (GAO) collectedan estimated $2.4 billioafter September 11, 20qGAO, 2002) A
content analysis of news reports and official agency sources identified an evolving disaster response
systemof 456 pulbic, private and nofprofit organizationghat engaged in response operations during the
first three weekgComfort, 202). Other sources identified over 1400 nonprofit organizations involved in
recovery activities over a simonth period (Kapucu 2003). Yet, despite an abundance of material
resources and voluntary personnel, many organizations and individuals needstgnasshadlifficulty

in finding adequatsupport or services.

In disaster response and recovery operations, the ratio of demand for assistance to capacity to provide
resources varies over time. In thétial stages of disasteimmediatedemand involve actions to protect

lives and provide assistance tmjured persois. First response organizations such as fiepartments
emergencymedical services,and poli@ departments seek toeeturgentdemand of disaster victims

under tight time constraint®uring the recovery periodssues ofunemployment, sustainable business
operations housing, and medical carefor victims and theirfamilies emerge that require lofigrm
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considerationHouseholds and community organizations need appropriate resourcesetodifierent
needs in the distinct phases of disaster management: mitigation, preparedness, response, and recovery.

Theoretically, constructing formal modelto describe the dynamilationshipof demando capacityin
disaster operationis not easy Different environments generate different types of demands that lead to
the formation of different types of response pattdrased upon different levels of capacity in the system.
These variable conditionmcrease the complexity of modeComplexity thery, based on discrete
dynamics revealsthe power of selbrganizationrembeddedn complex system The interactionsamong
agents whaarticipate in response operations form a disaster response system that respggaitaaeous
order.In this paper, e test the applicability of a discrete dynamic modeling method, Cellukutomata
(CA), in a simulatedlisasterenvironment

Disaster Response and Fragility

1) Model
When a major disasteroccurs it threatensthe potential collapse ofthe interconnected soafechnical
systemthat provides technical, social, economic, and cultural services to a specific region or community.
The disaster threatens not ontllge destruction of technical infrastructure such as power lines, raads,
communication linesbut alsothe social organizational, and economstructuresthat support the daily
operations of the communityThe socbtechnical infrastructure in most communities not a well-
connected systenbut rather afragile, interdependensystem thais sensitive taeshacks and disruptions.
In such systems, disruption triggers unexpected consequences and cascading failure. The actual
environment of disaster is extraordinarily complex. In this preliminary research, we make four basic
assumptions regarding the disaster emvinent and the relationships among agents participating in the
disaster response system. These assumptions allow us to reduce the complexity of the disaster
environment and explore a simple model between demand and capacity in a dynamic environment.

First, we develop our model for a discrete geographical space and legal jurisdiction. In an actual,disaster
geographic and jurisdictional boundaries are not necessarily conginentir model, we introduce
geographical andurisdictional regions within a two-dimensionalspace, which could be expanded.
Second, he interaction among agenengaged in disaster response operations and the patterns of
communication among theinternal componentsand between the agents and othexternal system
create thelynamic of the response proce8¥e assume that theechand flow of disaster response actions
depends orthe initial magnitude of disastethe degree of‘cascade effettor interdependencamong
potential or actual damaged parédthe capacity flow among th@articipating agents based on their
initial conditions of resources, knowledge, skills, and equipm&he initial magnitude of disasteis
measuredby factors such as physical magnitude, geograptiation, and preparedned®er disaster.
Assessing thanitial magnitude of disaster isecessarily a preliminary effort in uncertain conditions, and
the magnitude is likely to be revised repeatedly as more accurate information becomes avaikhle.
case ofthe WTC disasteyrthe number ofleadwas estimate@t more thantenthousandon the first day

but dropped tdess tharthree thousands more specific information became available (Con603).

Estimating he cascade effedt any given disastebecomes a critical factdn assessing thdemandfor

housing, sanitation, economic activities, telecommunicatisgchological counseling, or other services.

In routine operations, the components of the sociotechnical system are highly interconnected. If people
need medical treatment, they may call 911 t& & help and be transported to a hospital in an
ambulance using the shortest route over city streets. However, if even a small part of this interdependent
process malfunctions, it can cause serious implications. If the telephone lines are damaged,
commurication fails. If many people simultaneously switch their communication means from land
telephone lines to wireless or cellular, cell phones will not work because the unexpected increase in the
number of connections would overload the system. Assessingtirelependence among organizations
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and systems in disaster operations makes the analysis of actual events very complex. In this simulation,
we limit the number of interactions among the agents to two steps.

Third, the degree of coordination developedang agents also affects disaster operations. Disaster may
shatter the existing sociechnical system, and rebuilding activities that reconnect components of the
social and economic systems to the relevant technical systems through coordination amnaréen
important than acquiring resources for the separate systems.

Finally, thetype and quality of the initiatlisaster relief actions also affect teeope ofdemandover the
period of recovery.Response to demarttépends on the initial capacity of pmse agents, the inflow of
additional resourcefrom outsideareasand the burrout rateof personnel engaged in disaster operations,
or the rate at which individuals drop out of service voluntarBy definition, disaster is an unexpected
eventthat exceed the normal capacitpf a community to respond to adverse events. Each of these
indicators can be measured and included in a dynamic computational model.

Within the above framework, individuals seek ways to assist victims and lessen damagebehhgior
depends heavily on the degree of information available, the degree of planning and preparedness in place
prior to the event, the specific time, location, and magnitude of the incident, and the existing
organizational resources or constraints. hedry, if responders have perfect information, they find
victims and assist them immediately. However, in practice, rescue agents don’'t know exactly who needs
what kinds of help in which locations. Thus, we initiate the simulation in a state of high amtgrand

observe the pattern of changes in the interaction among the agents by increasing the amounts of
information and rationality available to the agents.

To test the model, we developed a simulation platform using Cellular Automata (CA) to degwibe t
relation between demand for assistance and a community’s capacity to provide disaster services. CA is
not only easy to model, using discrete spatial dynamics, but it is also expandable, allowing the developer
to include various types of behavior. It phaces a complex pattern of interactions among multiple agents
and allows researchers to observe the emergence of patterns. Christopher Langton’s model of artificial
life, JohnConway’s game of life, Axelrod’s cooperation model and other models of comp#t®ras use

this methodFlake, 1998; Gaylorét al., 1998; Axelrod, 1996, Langton, 1994)

To construct the model, we simplified the problem situation of a disaster environment as follows:

First, we built a discrete twdimensional, N by N, space which is divided by jurisdiction. The initial
magnitude othe simulated disaster is annotated as C, and the number of damaged Nited/is assign
the initial demand td\y randomly within the disaster space. The amount of resources available to meet

demands from the damaged site is annotate® gswhich means the site ij requires the amount of D
resource at time t.

Second, a cascade effect is introduced to increase the demand for disaster services, and the response
actions, or capacity of the agents, reduces the demand size. The rdlgticrfermalized as:

D" =(@+r)(D' —S'),wherer is growth rate of demand coming from cascade effant S'; is
the resource of supply agemwho are on sité at time t.

Demand does not increase infiiteFor instance, the &b of rescuing injuredvictims does not exceed
the cost of humarife. Thus, we give a constraint to maximum demand level.



Third, each agent occupies one cell and moves around the space looking for damaged sites. When agents
find the damaged siteshey alocate their capacityo restorethe site Based on th&e assumptions, the

capacity of theagent on the site ij at time &'y , is defined as follows

S =1+ R)(S'i — D'j), whereRis the growth rate ofapacitycoming from outsiddelp.

Fourth, we follow the behavior rules for information search and movement defined by traditional CA
methods. We use the method for designating movement among near neighbors in the system attributed to
Von Neumanrand used by others in the simulatiof complex systemgEpsteinet al, 1996; Gaylordet

al., 1998; Wolfram, 1994)The search method is heuristic and assumes high uncertainty. No command
and control melsanism is used to control agents.

Finally, we introduce a weak type of voluntary coordination. We assume that the jurisdiction with the
highest surplus capacity dispatches its agent to the jurisdiction that has the greatest need, or demand for
services Rawls 1999). This process continues until either there are no surplus resources available or the
demand is filled.

2) Findings
The graphs below present a simplified version of capacity, interpreting capacity as available resources. In
practice, capacityncludes a dimension of organizational learning, but for this initial model, we simplify
the term capacity to mean available resour@é® initial magnitude of disaster is given 1000 snithich
implies that the disaster requires 100Qhits of resource to relieve the damage at time t=1. These
demands are randomly allocatemi40% of the region. The agents only have a capaafty30% of the
initial demand at time t=1. If agentietermine the need and locationddgmandfor damaged sites, they
allocate th& capacity for those sites and expetieir resourcs but replenishtheir capacity at the rate
R=0.02 atthe beginning of each timgeriod The demand level decreaselue to the agentsrescue
activities but also increassdue tothe cascade effecestmated athe rate of r=0.01. The burout rate of
agents is givera value of5. Thus, agents whexpend all resourceat t=i will not activateagainuntil
t=i+5". Using this definition, thdasic pattersof demand and capacigreshown below.

Figure 1. Demand and capacity changes across time
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Figure 1 shows how the demand and capacity level is changatidggents responseactivities after
disaster.The graph coulde divided into threeperiods:Phase |, Phasik and Phase Ill.Phase lis the
period from the starting point of disaster to the point where demands stadecrease.In the initial
period capacitygradually decreases as demand increases. This phenomenon as@gsnts expend
their limited avaliableresource to meet increasing demand from the evéor exampleduringresponse
operations followingSeptember 11, Health Care Financing Administraadministratorslecided to send
non<ritical patients to nursing homes to alleviate crowding iraahospitalsif they allocatedtheir
resourcs for non-critical patients, they could not help other people Wiaal more serious medical needs
In actual eventstesponse organizatiomsay dispatchmore resourcs thanthe victims actuallyneed. If
participating agenciedo notconserve theiresource and use albf themin the beginning stage, thereas
time lag to reéurn their resourcs to the rormal level.In Phase |, ifst response operations ambilized
by organizatios with legal responsibilitie$or protecting lives, property, and continuity of operatiens
police, fire, and emergency medical servieewhile informal groups of bystanders, family and friends
are often the immediate actors in the stricken area. This model considers only tres adtrecognized
response organizations in Phase |, and assumes that these organizations are operating under the Incident
Command System (Comfort 1999).

Within our model, after a specific poirt=118, capacityexceeds demanéhase Il is the period frm the
end of Phase | to thihresholdpoint of change in the response systeihthis stagenewresources enter
the disaster area from the outside and other organizjmn to help victims. The entrance of new
organizatios increases the difficulty ofcoordination in managing disaster resportagks as the
operational relationshipamong first response organizations and new organizatiees to be defined
Asresponse operations evolve, these interactions need to be redefined feueasbding situatn. New
types of demandhat are not anticipated in planned response procedamedikely to emerge and
respondents need to redefine the situation and assess their actwities their changed environment.
Collective learning and actioare essentidb facilitate coordinated action.

Phase llirepresents the actions of disaster recovery and return to normal operationas matt had much
attention in studies of disaster manageme@uantrary to common assumptigmesource scarcity is not the
biggestproblem rather, appropriatallocationof resourcess more importanin Phase Ill.Figure2 shows
the amount of fundraised and actually distributday large charities following September 11, 2001

Figure 2. Amount of funds raised and actually distibuted by 34 large charities
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Distribution of resources is a problem of coordinatiomg&nizationsmay have resourcegut they may
not be distributedefficienty to people who need help. In some case the WTC operationgesources
were distributed in a duplicae way; in other casesyictims and theiffamilies haddifficulty in finding
source of assistancer applying for aid. Coordination in interorganizational activities essential in
Phase I

The spatial size of disasteM] influences the demand and capacity flowe increasethe size of
dimension, N, and obsenthatthe termination time of demand decreaderminationtime isdefined as
the time when the demand level decresatse10% of initial demand, and it issed in this model as a
measure of the efficiency of response activities.

Figure 3. The effect of spatial size omluration of disasterresponse activities
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The above figure shows that as the sizedidfaster areincreasesthe time needed to meet the demand
also increasedlf we divide the same spatial disaster area into multjplésdictions it increases the
efficiency of response activitiesIf relief teams affiliated with different jurisdictions have different
command and control procedsréheymayrespond only talemands within their respective jurisdictions
We assume thataeh agens activities are confined tbis or her own regionWe controlthe initial
conditions such ascope ofdemand andapacity area ofdisaster spaceirgency of needand divided the

N by N disaster space according to the number of jurisdictions. Undénalated disastezontext we
calculate the termination time byndreasing the number of jurisdictisnparticipating in response
operations



Figure 4. The effect of Numberof jurisdiction s
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ANOVA analysis shows that the number of jurisdictsoimfluences the termination timgF=2.57, p
value=0.009) Althoughthe evidence isiot strong it implies a negativecorrelationbetweenthe number
of jurisdictions and termination time.

Finally, an initial inquiry into the function of coordination was simulatadintroducing a weak form of
cooperd&on into the model. We sought tomodel spontaneous cooperatioy introducing the following
assumptionsEach jurisdiction has different levelof resource according tothe size of its demandt
each time phasef disaster operationsSome jurisdictioa have surplus resourgewhile others lack
resourcs in comparison to the size of thettemand. The jurisdictionthat has the highest amount of
surplus resourcewill voluntarily dispatch agents to share its resources withuhsdiction that has the
lowestcapacity in comparison to its demanthe amount of the shared resowsa®es not exceed the
amount of surplus.

The assumption wéuild into our model is that the dispatched agents do not directly rdaekictims.

They come from different jurisdtions andlack informationregarding the specific needs and location of
the victims Therefore, they seardbr victims using von Neumans search processf identifying critical
targets through near neighbotdsing these assumptions, the simulatiesuts showthat this form of
spontaneous cooperation Hatle effect onthe efficiency ofdisaster responsn further iterations of the
model, we will explore factors of core information and timeliness as possible conditions that influence
coordination ad efficiency in disaster response.

Controlling for the number of jurisdictions involved in disaster response activities, the model produced
the following results.

Table 1. Statistical analysis result of sharing resource without coordination

Number of dirisdictiors t-statistic p-value
2 1.60 0.14
3 1.71 0.11
4 0.47 0.65
5 1.93 0.09

The simple strategef sharing resourcewithout coordination for allocating the resouscgppropriately
appears to have little effect on the efficiency difaster respnse activitiesThis phenomenon can be
attributed to the method by which the demand is distributege distribute demand by sampling from a
uniform probability distribution. This results in the situation where all the jurisdictions have a similar
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level d demand, hence there is no clear division between jurisdictions that have spare resources and those
that have high demand. Conversely, if demand were distributed in clusters (a situation that would
correspond more accurately to actual incidents), the@mte of even simple voluntary cooperation may

be observed.

The Role of Information

The generahssumptionn disaster management is that lack of informatiothis basic factor in limiting
the efficiency ofresponse@mong organizationslowever thecritical factor appears to be the centrality of
information to core disaster response activities, rather than simply the amount of information available to
the participating agents\Network theorylends insight to this concepBoth empirical and theoretal
research shosvthat information flow is more efficient than initiallyecognized The concept ofsmall
world networls (Watts, 1999anssumeshatthe distancebetween any two nodeés large network such as
theWorld Wide Web or research collaboratiaetworkscan be traveled througi smallaverage number
of communication linkscompaed to their network size. For instance, the World Wide Web network of
325,729 vertexeer nodeshasanaverage distancef 11.2links (Albert et al,, 1999) The co-authorship
network of MEDLINE, with approximatelyl,520,251 vertexes ham average distancef 4.91 nodes
(Newman, 200Q) The findingsindicatethat our world is small enough to reaehy other anonymous
person viaa small number of other persom#ho are engaged in related activiti@dilgram, 1967; Watts

et al, 1998) Random graph theories also provide evidence of efficient information fldwe. random
nework of Erdds and Rényi (1960)usually calledthe ER network,is the pioneering model. Givea
fixed number of edges, N, and probability, that each pair of edges is connected, the netwonk
average, will have pN(NL)/2 edges.

— (N1 k N-1-k
The degree distributiofiollows binomial distribution, P(k) _(k )p (1-p) . If the N is large

— kT
enough, the degree distribution will follotlie Poisson distribution,P(k) =e"k /K :

Figure 5. The degree of distribution of ER graph
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We also calculateraaverage dgree ofdistribution of vertices fothe network. he average degrde

k=p(N-1)~pN which implies the expected number of vertices with degree k is
E(X)=N* ((7)p*a-p)"

Also, we may calculate thgoint at whichthe network forns a clique. Percolation theorasserts that it is
possible to identifithe emergereof a giant connected componéntdynamic networks (Peitgen, Jurgens
and Saupe, 1992The theory indicates that when a critigadint, Pc, is reacheda giant cluster emerges

within the entire networkThe percolation thresholoh a random graphs p. =1/ N, that is,kC =1,
The findings ofthe ER network are modified bthe “small world' network(Wattset al, 1998) andthe
“scalefree’ network (Barabasiet al, 1999; Dorogovtsewet al, 2002; Newman, 2001)The degree
distribution of complex networks followan exponential distribution or powéaw distribution, which is
heavily right skewed andhas along right tail in contrast tothe Poisson distribution. Moreover, the
clusteringcoefficientis greater tharthe ER model(Watts, 2003) The characteristics asmall average
distancea high clustering coefficient, and formation afgiganticconneted component enable flexible
information exchangeFor example, o September 11, 2.3 million people veit FEMA’s homepage
(Seifert, 2002) FirstGov, FederalBureau ofInvestigatio, Department oDefense and other agencies
also provided information through“small world network. An analysis of thee-mail exchange for one
FEMA official in a key structural position for organizing relief activities following the 9/11 terrorist
attacks showsthat the average distander the exchange of core information in his communications
network of 158 organizations &.04 nodes. This means thitan organizationsends a messagi can
reachany of theother 157 organizatios in his networkin an averageof through 2.04nodes. (Ko,
Zagorecki, and Comfort 2003)This finding indicates thainformation is accumulated and delivered
through a small world network except under conditions of the physical destructioh the
communicatios system.

Theamountof information exchanged through telephone, wireless phone, satellite phone, a moliile e

and paging device, TV, radio, newspaper and Internet is enornang finding effective means of
exchanging core information among organizations with @mésponsibilities in disaster management is
essential to improving regional capacity for disaster risk reductios.s@alefree network show, the
random failure ofa network owing to disaster woulde damaging onlyf it destroyed asignificant
numberof high degree node(Albert et al, 2000) The identification of small world networks among
organizations in a given geographic region exposed to disaster risk would represent a critical advance to
improving capacity for interorganization decision support in disaster management

If complex network trarsmit massive amounts of informatiohow is it possible toidentify the core
information? Core information is botktructureand context dependent. The structural approach is to
check the connectivity.Jurisdictiors do not exchangeinformation at the samerate and amountThe
absencef certain key organizations will disconnect the whole network into partitioned subgrapbs.
method is to check which node iscatpoint which meanghatdeleting a specific nodwill increase the
number of components ithe graph. If we identify thecutpoins, we can analyze the activitiemnd
information exchanggatternsof the actors. Comfort (2003) adopted this approach amalyzedthe
information exchange patterns of FEMA with other organizatiohsecondmethod is ® check the
bridges The analogy has been ustt both social networkand transportation netwaskif certainedges

of the network aralestroyed, the network will divide into disconnected components. Titlastifying
which edges are bridges anghich are incident nodes to the bridges wilidentify types of core
information. When we use network analysis to identify the core informationneezlto use multiple
measures. For instance, Comf@&003) identifed six cutpoints: FEMA, Sdvation Amy, Columbia
University, Presbyterian Disaster Assistance Newsgroup, YMCA, Department of Housing and Urban
Development. The bridge identified blye Lamda seincludes:the linkage among FEMA, ARC, Church
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World Service,TxXNPSC Coordination TeanBetter Business Bureaand NY. Also, when we use thi-

core analysisthe identified core organizations are: FEMA, American Red Cross, Church World Service,
Salvation Army, Catholic Charities U$yew York State Emergency Management Agen8ynerican
Psychiatric Association Comntite on DisastemNew York Community TrustFeed The ChildrenAs we

are able to identify key actors, we can examine the contentiseafore information. Here, caution must

be taken to assess whether differences in results originated from samgthgds Thus,this means of
identifying the core information should be complemented bygépth qualitative interviews and inter
subjective interpretatioaf the data

The final issue ih the model is the functionf coordination. Our simulation sh@that sharig resource

using a simple form of cooperation based on a Rawlsian concept of justice as an indicator of coordination
has little influence on the efficiency of disaster response operatitmsever, the conceptualization and
formalizationof coordination $ still under study and observation in practid¥e use simulation with
empiricalstudiesas a means to explotke possible combinatigrof information and strategigs practice

(Flake, 1998; Rivkin, 2000)

Conclusiors and Further Discussion

Based onour CA design,we devebped a preliminarymodel of the dynamics of disaster response
operations. We argue that different phasédlisaster responsequire different types ofinformation
equipmentand management slgliThe efficiency of disaster response is influenced byrtiagnitude of
disastertype and amount afesource available number of jurisdictios involved,andcomplexity of the
response strategie§ heresults show that efficienay disaster respondeasa negative relation to initial
disaster magmide anda positive relation to initial supply capacityrhis is not surprising, and confirms

the intuitive judgment of any practicing emergency manadérwe intereshg finding is the positive
relation between the number of jurisdict®mvolvedand the efficiencyof disaster response operations.
This finding is counterintuitive to the general observation from practice that efficiency drops as the
number of jurisdictions involved in response operations increases. The intervening factor appears to be
identifying thecritical nodes through which core information is exchanged; that is, verifying the small
number of links that are used to communicate critical information under urgent conditions. The degree of
change and the direction of influence in this process nedw tstudied further in a more fully developed
simulation of this pattern.

Finally, we introducd a weak strategy of self organizing cooperation as an indicator of coordination. In
this strategythe jurisdictionwith the largest surplus of resources asdiise jurisdiction with the greatest
needat each time step. The resuthow thathis simplified strategy of resource sharing does not increase
efficiency in comparison to a strategy of noaoperation. Other factors such as proximity, timeliness,
and pior experience among agents may be more important in increasing efficiency than a Rawlsian
theory of justicg(Rawls, 1999)n resource sharing.

These findings support the conceptsrhall world networks in whichlarge networks of many vertices
emerge thafre interconnected by a relatively small number of communication lifikis structural
property enhanagnformation flow. However, theoordination ofcore informatioramong the connected
nodes iscritical. Thus,in the construction of a more advanceachslation model, it will be essential to
determine what is the core information and to whom it is transmitted rather than simply assessing the
amount of information that flows through the response system.

This research represents an initjghase in theconstructon of a computational model for a rapidly
evolvingdisaster response systeRurther studieswill build on findings suggested in this pap&e will
explore this model usingifflerent typesand magnitude®f disaster, resoursginternal and extenal
communication patternandnumber ofjurisdictions We will also exploraliverse typs of coardination,
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based patterns observed in practic&ey variablesof information exchange, communicatiorgnd
timeliness incoordinationprocesses will banalyzdto explore the dynamics @&volving networls.
Acknowledging itslimitations, computationakimulationnonetheless ian invaluable tool for analyzing
the complex activities of disaster respon$his simulation method an fill an importantgap between
qualitative and empirical studies of rapidly evolving response systems.
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